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FOREWORD 

This report supplements the series of volumes listed below, all of 
which were prepared under Contract NAS8-11486. The reports of the series 
are intended to illustrate methods used to determine parameters required 
for  the design and analysis of flight control systems of space vehicles. 
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 INTRODUCTION 

Model testing is probably one of the  oldest  tools  devised by man  to gain  insight  into 
the  behavior of physical  systems. In fact, it  may  be  the  only  rational  means  to assess 
the  influence of the variation of some  parameter on a hitherto unknown phenomenon. 
For  instance,  to  formulate Hooke's law of linear  elasticity,  it  was  necessary  to  con- 
struct  model tests with  geometrically  similar  models  to  evaluate  the  influence of the 
cross  section,  thus  leading  to  the  concept of stress. 

Tests  must  be  constructed  whenever a relevant  physical phenomenon  cannot be 
formulated  analytically  due  to a lack of knowledge  about it, o r ,  whenever  the  analytical 
representation  (mathematical  model)  becomes  too  complicated,  costly,  or  unreliable. 
Before  proceeding  with  tests,  however, a thorough  evaluation of the merits of tests 
versus  analysis should  be  made. Tests  may look  deceivingly  simple but may  run  into 
enormous  cost. On the  other  hand, a simple  test may easily  replace  a  tedious  anal- 
ysis.  Very often test and analysis are carried out in parallel.  This is done  especi- 
ally in the  aerospace  industry  to  assure  validity of the  results. 

The  question of tests  versus  analysis should be  seen in the  proper  perspective. 
The  recurring  costs of tests  may be very  high, whereas routine  analysis is usually 
much  cheaper.  Therefore,  every  effort should  be  made to develop  analytical  tools. 
On the  other  hand, more  extensive  tests are necessary  to  develop  these  capabilities 
and will continue  to  be needed to  verify  analytical  predictions. Only a systematic 
integration of tests and analyses will satisfy both requirements:  accuracy of prediction 
and cost-effectiveness. 

This monograph deals with  the  use of models, not with simulation.  Models in this 
sense are devices which employ  the  same  physical phenomena that  govern  the  behavior 
of the  hardware  under  investigation. In contrast to this,  simulation  uses  different 
phenomena.  Well-known examples  are  electrical  analog  simulations,  supersonic flow 
simulations  using  liquid  surface  waves, o r  the  membrane analogy of torsional  shear- 
stress patterns. 

Once it has  been  decided  that  tests wil l  be  conducted,  the  question ar ises  as to 
whether to  build a model or  to  test  the  full-scale  hardware. Some of the  factors  that 
influence this  decision are cost,  available test facilities, size of the test  item, and 
the  time at which  the results should  be  available.  The latter consideration,  especi- 
ally, is strongly  in  favor of models, if the  test  results are needed for  the  final  design 
of the  hardware;  generally,  models  can  be  built much faster  than  their  full-size  counter- 
parts.  Another  interesting  argument  for  models is this:  using  several  models which 
exhibit a variation of some  important  parameter,  an  insight  into  the  behavior of the 
physical phenomenon  in response  to  this  variation is achieved.  Sometimes  this is the 
only way  which  allows  an  intelligent  interpretation of the test results. 
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The  testing of models  and-of  full-scale  hardware are, in  principle, not different 
from  each  other.  The  differences  are of a technical  nature and  in  the area of interest, 
i.e., for  launch  vehicle  control,  they  occur  mainly in  aerodynamic  testing.  Conse- 
quently,  the  bulk of this  monograph.wil1  be  concerned  with  the laws and  difficulties of 
valid  modeling. How to plan  and conduct the  actual tests is a different  subject,  and is 
adequately  covered in other  monographs of this  series,  e. g. , Reference 9. 

In connection  with  the  control  dynamics  requirements of launch  vehicles,  there are 
four  basic  areas which call  for  testing of models: 

a.  Structural  dynamics 

b. Liquid fuel  sloshing 

c.  Aerodynamics 

d.  Thermodynamics 

This monograph is concerned  with  the first item in  the list.  The  second  item is 
treated in another  monograph of this  series  (Reference 10). 
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2/STATE OF THE ART 

As mentioned in the  introduction,  model  testing  has an ancient  tradition.  However, 
only at the end of the 19th century,  through  the  works of Lord  Rayleigh,  Reynolds, 
et. al., was model  testing put on a scientific  basis. In 1914 Buckingham of the 

'National  Bureau of Standards  published  his  famous  "r-theorem.  This  theorem in- 
troduced  dimensional  analysis as the  basis  for all model  work,  and  it still remains 
to the present day. In subsequent years Bridgman2 and especially  Langhaar put the 
n-theorem on a sound mathematical  basis and started  to  exploit its powers and pit- 
falls. Since  then  nothing  fundamentally new has  appeared in the  theory of models. In 
recent  years  several  investigators6'  working in areas previously untouched  by model- 
ing  have  formalized  some  interesting  means of combining  dimensional  analysis  with 
a partial  insight  into a given problem.  This  leads  to  immensely  practical  "distorted1' 
models in  which  only  the  relevant unknown parameters need to be  scaled; it also  opens 
the  door  to  the  investigation of so-far  "unscalable"  problems. 

1 

The  classical area of model  testing  has been  in  fluid and gas  dynamics, with com- 
plete  geometrical  similarity between  model  and  full-scale  hardware.  The  reason  for 
this was  that flow patterns  can  be  accurately  calculated only in exceptionally  simple 
cases and,  second,  that  the  test  facilities  demanded  small-scale  models.  The advent 
of aeroelastic  flutter  models in the  1940's  brought  the  realization  to  the  aircraft  in- 
dustry  that  complete  dynamical  similarity  ("replica  models") was impractical and 
would also  lead  to  erroneous  results  because of model imperfections12.  Dynamically 
distorted  models which would scale only  those  modes of natural  vibration which cor- 
respond  with  the  lowest  frequencies  brought  the  desired  results.  Pure  dynamic  test- 
ing has been carried out  widely on the  full-scale  product.  However,  the  sheer  size of 
modern  launch  vehicles such a s  Saturn  again  renders  extremely  attractive the use  of 
models  (Reference 13 to  19) to make  the  test  item  more  tractable and less  expensive. 
A t  present,  very  expensive  replica  models  are in use;  however, they are   far   less  
expensive  than  prototype  hardware. With a  better  understanding of vehicle  dynamics, 
i t   i s  to  be  expected  that  distorted  models  will be used  eventually. 
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3/MODEL DESIGN CRITERIA 

Scale  modeling is more an art than a science,  because a physical phenomenon requir- 
ing  model  work is either  poorly  understood  or its application is very  complex. In 
addition,  the  theory of models  may put constraints on a particular model  which  can- 
not be  fulfilled in practice,  The  situation need not be hopeless,  however, if an in- 
vestigator  understands  the  theory and the  possibilities it offers.  Ideal  modeling is 
the  exception  rather  than  the rule, and it occurs  mostly in textbooks. In the  follow- 
ing  sections  it wi l l  be  attempted  to outline the  principles of realistic modeling.  Most 
sections will be  accompanied  with  illustrative  examples. 

3 . 1  DIMENSIONAL  ANALYSIS 

Two  principles are involved in scale-model  work: 

a.  The  physical  phenomena a re  independent of the  units of measurement  (invariant 
under  coordinate  transformation). 

b.  The  same  physical  laws  govern  the  behavior of the model and the  full-scale  article. 

At least in classical  mechanics,  item a. assumes  the  role of an axiom;  i.e.,  it 
must be  fulfilled  under all circumstances.  From  this point of view, a physical pheno- 
menon must be described  after a certain  level of abstraction  has  been  achieved.  This 
approach  uses  the  relevant  dimensions as the  problem  coordinates,  the  units of which 
are purely  coincidental and defined by convenience. 

Theoretically,  iterh b. is always  true. In practice,  however,  "scale  effects" play 
an important  part. Between a model and a full-scale  article a physical phenomenon 
may  be  important  for one  but not for  the  other,  Neglecting  the  unimportant phenomenon 
in  the  full-scale tests,  for  instance,  makes it  appear as if the model were exhibiting 
different  phenomena.  The  classical  example  for  scale  effects is small-scale  model- 
ing of liquid surface  waves.  The  surface  tension of the  liquid is  important  for  the 
model, not the full-scale  application. 

A physical  variable,  y,  may depend on several independent variables,  yl,  y2,  etc. 
An unhown  relation 

wil l  exist which ties  these  quantities  together. 
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An alternate way of writing  this  relationship is 

f (XI, x2,  * e * ,  Xm) = 0 

which is more  convenient  for  the following developments. One of the  variables,  say 
X I ,  is the  dependent  one; all others  must  be  independent of each  other  to  assure  that 
Equation (3-1) does exist. 

There are several  things  that need to  be  said about  Equation (3-1). A s  to  the se- 
lection of variables:  the  investigator  must  be  able  to  make at least an  intelligent 
guess as to  the  identity of the  important  variables  that  enter  into  the  problem. If 
there is any anzlytical  formulation of the  problem  available,  this wil l  be of great 
help in  identifying these  variables. If not,  intuition and experience  are  very  import- 
ant. In case of doubt, a variable should be  included rather than  left  out.  It is gen- 
erally much simpler  to  discard an  extraneous  variable  during  the  experiments  than 
to  account for a missing one which proves  to  be  important5. Next come  the  dimen- 
sions:  the  variables of Equation (3-1) must be measured  relative  to a consistent  set 
of basic  dimensional  units, i.e. , units  for  length,  time,  mass,  etc. If this is not 
done,  conversion  factors wil l  distort  the  physical  phenomena and render Equation 
(3-1) useless. Some consistent  systems .of dimensions are : 1 

a. cgs  system  (centimeter,  gram,  second)  which  uses  the  gram as the  mass  unit; 
the  derived  force  unit is "dyne. ' I  

b.  mks  mass  system  (meter,  kilogram,  second) which uses  the  kilogram as the 
mass unit;  the  derived  force  unit is "Newton. ' I  

c. mks  force  system  (meter,  kilogram,  second) which uses  the  kilogram as the 
force  unit;  there is no special name  for  the  derived  mass  unit. 

d.  British Mass System  (foot, pound, second)  which uses  the pound as the  mass 
unit;  the  derived  force  unit is "poundal. 

e. American  Engineering  System  (foot, pound, second)  which uses  the pound as the 
force unit;  the  derived  mass  unit is "slug. 

In American  aerospace  technology,  the  basic  unit  for  length is the inch rather  than 
the foot. For dimensional  analysis it is of no  consequence  which  system of measure- 
ments is adopted as long as it is consistent. In fact, an  investigator  can  make up his 
own system and use it to  advantage. For instance, in a problem  requiring  the  dimen- 
sions of length and time an  alternate  system of dimensions would be  velocity and time 
or velocity and acceleration. 

Another  useful feature in dimensional  analysis is the fact that  several  basic  di- 
mensions  may  be of the  same type. For instance,  different  units of length  may  be 
employed  parallel  to  the x-, y-,  z-axes of a spatial  coordinate  system,  thus  obtain- 
ing three rather than one basic unit of length. This  procedure is permissible only if 
the  dimensions of all variables  can  be  separated  in  this  way. 
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Given a set of basic  dimensions  [dl],  [d2], , [d,], where c is the  total 
number of dimensions  employed,  the  dimensions of the  variables, x, of Equation 
(3-1) are given through 

(i = 1, 2 ,  -.- , C;  p = 1,  2 ,  a * - ,  m) 

Square  brackets are used  here  to  express  the  fact  that  the  dimensions are involved, 
not the  numerical  quantities.  For  instance,  xp would be  the  magnitude of the pth 
variable  x in Equation (3-1), whereas [x,] is the  corresponding  dimension.  The 
notation fl indicates  that  the  product is to  be  taken  over  the  term  to the  right of it  for 

i=l times  that  for i=2, etc.  The  exponents  aip  form a c-by-m  matrix of numerical 
values which is  characteristic for the  variable  dimensions  relative  to  the  basic  di- 
mensions  chosen  (see  example in Section 3.1 .1) .  The  matrix "a" is fully known. 

i 

The Buckingham 'h-theorem"  states  that a dimensional  relation of the  form (3-1) 
can be transformed  into  nondimensional  form,  such  that 

The  letter  g is used here to denote  that  this is not the  same function  which occurs in 
(3-1). The  nondimensional  variable r l  may  assume  the  role of the  dependent variable 
formerly occupied by xl.  The  variables ng,  7 3 ,  etc.  are  necessarily independent of 
each  other.  The  number  n of the  dimensionless  variables is smaller  than  the  number 
m of dimensional  variables in (3-1). 

The  value of relation (3-3) for  scale-model  work  lies in the  fact  that  it is non- 
dimensional.  This  means  that  it  applies  equally  well  to a large-scale  representation 
of a physical phenomenon as it does to a small-scale  version,  because  the only differ- 
ence between the two l ies  in the  units of the  dimensions. In other  words,  model  and 
full-scale  "prototype"  have  an  equation of the  type (3-3) in common. Therefore,  con- 
clusions  drawn  from  experimental  scale-model  work in  nondimensional form  can  be 
applied directly to the  dimensionless  variables of the  full-scale  prototype. 

The  dimensionless  variables, R ,  of (3-3) must  be  some  function of the  dimensional 
variables,   x,  in (3-  1). For  the  purpose of dimensional  analysis  it  will  be  sufficient  to 
assume  that  the  nondimensional  variables are obtained as products of powers of the 
dimensional  variables  (these could also  be  sums, etc. over  variables of equal 
dimension). 

(p = 1, 2, * * *  , m;  q = 1, 2 ,  - . e ,  n) 
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The  exponents bW form an m-by-n matrix of numerical  values and are so f a r  unhown. 
Equation (3-4) relates the  numerical  values of the  variables. A similar  equation relates 
the  dimensions  themselves. Since  the  variables n are dimensionless  by  definition, i.e., 
[n 3 = [O], this relation is q 

b 
Col = ; [xp] I)q (3-5) 

(p = 1 , 2 , * = * , m ;  q = 1 , 2 , * * * , n )  

Substitution of (3-2) into .(3-5) yields 

Multiplying the  expressions  forming  the  base is equivalent  to  adding  the  exponents; i t  
follows  that 

The  basic  dimensions  [dl],  [d2],  etc. are independent of each  other.  Therefore, 
each  individual  exponent  must  be zero  to  generate  the  dimensionless  quantities [O]. 

pC bpq 
= o  

(i = 1, 2 ,  * * *  , c; p = 1, 2, .* '  , m; 

q =  1, 2 ,  a * - ,  n) 

This is the  condition  that is needed to  calculate  the  exponent  matrix  which,  accord- 
ing to Equation  (3-4), transforms  the  dimensional  variables x  into  the  nondimensional 
variables n. The  theory of simultaneous  linear, homogeneous  equations2'  gives  exact 
criteria about how these  solutions  can  be  obtained.  Generally, when only a few basic 
dimensions are used,  the  solutions  can  be found by  simple  arithmetic  operations (see 
example  in  Section  3.1.1). 

Equation (3-6) describes c  simultaneous  linear  equations,  where  c is the  number 
of basic  dimensions  used in the  problem.  There are a total of 

n = m - r  (3-7) 

linearly  independent  solutions, i.e., columns of the  matrix b which determine  the 
number  n of dimensionless  variables T .  In this  equation  m is the  number of dimension- 
al variables x ,  and r is the  rank of the  matrix a. Usually, r is equal to  c; however, 
there are exceptional cases where r may  be  smaller1. 
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Equation (3-6) does not  provide a unique  solution  for  the  matrix b. In fact, there 
is an  infinite  number of valid  solutions.  There is usually a relatively  large  finite. 
set of solutions when only the  simple  powers of the  variables are considered. 
Watkins21,22  has  developed a computer  program which will  automatically  compute 
this  finite set of solutions and display  the  resulting sets of dimensionless  variables 7. 
Tradition and the ease of comparison with other  model  experiments  make it advisable 
to  use  certain  standard  dimensionless  variables (see Appendix A) such as Reynolds 
number, Mach number, etc. To  simplify  experimental  control, it is a good rule to 
set  up  the  dimensionless  variables T in such a way  that  the  influence of the  dimension- 
d variables  x which can  be  varied is nicely  separated. How to  achieve  this  has  been 
outlined by Langhaarl  (see  also  example in  Section  3.1.1). 

The  existence of n  linearly  independent,  nontrivial  solutions in (3-6) asserts the 
validity of the Buckingham  theorem (3-3). It should  be noted that  this proof is 
relatively  straightforward as compared  with  the  proofs  given  in  the  textbooks. 

The  entire  procedure of dimensional  analysis  can now be  described as follows: 
The  dimensional  variables x are collected in  (3-1);  the  exponent  matrix a is found in 
(3-2);  Equations (3-6)  and  (3-7) permit  the  selection of some  suitable  exponent  matrix 
b;  using  Equation  (3-4),  the  nondimensional  variables, 7, are computed;  these  vari- 
ables  enter  into  relation  (3-3), which is  suitable  for  scale-model  work. 

3.1.1 EXAMPLE:  LATERAL VIBRATIONS OF A LAUNCH VEHICLE. It is intended 
to  perform model tests on the lateral vibrations of a long,  slender  launch  vehicle. 
For  this  purpose  it  will be sufficient  to treat  the  vehicle as a beam which exhibits 
bending and shear  deformationslg. 

The  number of basic  dimensions  to  be  encountered is c = 3. These are, using a 
system of dimensions  based on the force  unit, 

[dl] = CLI; Length 

[d,] = [PI; Force 

[d,] = [TI;  Time 

The  variables which enter  this  problem are: 

Variable Symbol 

Circular  frequency x 1  = w 

Length of vehicle  x2 = a 
Mass per unit  length X3 = m 

Dimension  Dependency 

C+I Dependent 

CLI Independent 

[ L-, PT2]  Independent 
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Cross section X4 = A 

Section  moment of inertia x5 = I 

Modulus of elasticity x = E  

Shear  modulus x7 = G 

Shear  constant x = K  

6 

8 

c L21 

c ~ 4 1  

cL-2 P] 

[ L-2 P] 

- 

Independent 

Independent 

Independent 

Independent 

Independent 

This  establishes Equation  (3-1)  with  m = 8 as 

With  the  information given above,  the exponent matrix a of Equation (3-2) can  be 
written : 

w a m A L E G I 1  

1 -2 2 4 -2 -2 0 

o 1 o 0 1 

0 2 0 0 0 0 0 

The  rank of this  matrix is equal  to  the  size of the largest  nonvanishing  determinant 
that can be constructed  out of its columns. 

The  first  three  columns yield a 3-by-3  nonvanishing  determinant.  Therefore, 
r = 3 ,  and with  Equation (3-7) 

n = 8 - 3  = 5 

is the  number of dimensionless  variables II. 
Instead of using Equation (3-6), now, to  compute  the exponent matrix  b,  the  dimen- 

sionless  variables  will be written  by  inspection in the  form of Equation  (3-4).  Equation 
(3-6) is used  afterwards  to  check  the  validity of the  operation.  This  procedure is ad- 
visable  for  small  numbers of basic  dimensions. 

The  five  dimensionless  variables  are  selected in the following manner: 
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I E  There is nothing  unique  about this  selection.  Other  variables  such as - - etc. 

could  have  been  used as well. Since K is already a dimensionless  quantity, it can 
(but need  not)  be  used  directly as a nondimensional  variable.  From  Equation (3-4) 
the  assumed  exponent matrix b  can  be  deduced. 

A2 ' KG' 

- =2 

0 

-4 

0 

0 

1 

0 

0 

0 

0 

-1 

0 
1 
2 
1 

" 

- 
2 
0 

0 

0 

- "4 

0 

0 

0 

0 

0 

-1 

1 

0 

. 
0 

0 

0 

0 

0 

0 

0 

1 

1 

The  matrices a and b are multiplied  together  to  check  whether  condition (3-6) is 
fulfilled. 

*l T 2  *3 *4 *5 ""- 
0 0 0 0 

{a}  {b] = Fri 1 0 0 o 0 

[TI 0 0 0 0 0 

This is indeed the  case.  However, one more  check  must be made to  assure  the  validity 
of the  dimensionless  set of variables T .  It is conceivable  that a set could have  been 
chosen  that is linearly  inter-dependent, i.e., that  one  variable n could  be expressed 
as a function of the others.  This  cannot  be  the  case if a nonvanishing n-by-n (here 5- 
by-5) determinant  can  be  constructed out of the  rows of the  matrix b. Selecting  rows 
3, 4,  5, 7,  8 of b: 

1 0 0 0 0  

1 
0 0 -- 

2 
0 0  1 0 0  

0 1 -  
1 1 
2 

0 0 1  0 0 0 1 0  

2 2 
0 0 = " f o  0 1 0 = 1" 

l o  0 0 0 II 
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This  relationship  proves  that  the set of dimensionless  variables n is valid. 

The  dimensionless  statement of the problem (3-3)  is now 

o r ,  when isolating  the  dependent  variable, w 

3 .2  SIMILITUDE  AND  SCALING LAWS 

So far ,  only a single  physical  configuration  has  been  considered. At this point two 
separate  ones wi l l  be  introduced, one for  the  full-scale  or  "prototype,  the  other  for 
a scale "model."  Quantities  relating  to  these  representations will be labeled with the 
superscripts @) and (m) respectively. 

It  should be  clear  from  the  development in Section 3.1  that  the  dimensionless 
mathematical  representation of Equation  (3-3) is valid  for both  model and prototype 
since it is  independent of the  choice of dimensional  units.  Therefore, two equations 
can be  written 

I (3-10) 

and the  function g is exactly  the  same  for both cases. Taking r as the  dependent 
variable as before,  Equations (3-10) may  be  written as 

1 (3-11) 

The  essence of scale-modeling  consists of "scaling"  the  dimensionless  variables 7r2, 
r 3  in such a way that  they are equal for model  and  prototype. This  results in the 
similitude  requirements5 
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(q = 2 ,   3 ,  e * * ,  n) 

How these are to  be  fulfilled is demonstrated  in  the  example (3.2.1) and in a more 
formal  way in  Section 3 .3 .  When (3-12) is substituted  into  the  second  equation (3-11), 
a relation  between  the  independent  variables of the  model  and  the  dependent  variable 
of the  prototype results. 

(3-13) 

This shows  that a property of the  prototype can be  determined  completely  from  pro- 
perties of the  model. 

Comparison of Equation (3-13) with the first equation (3-11) leads to  the  scaling 
5 1 aw 

(3 - 14) 

Obviously,  scaling law (3-14) and similitude  requirements (3-12) can  be  combined in 
one  equation. 

(3 - 15) 

(q = 1,   2 ,  * * * ,  n) 

From a mathematical  point of view this  relation could have  been  inferred  directly. 
However,  for  the  physical  interpretation,  the  separation  into a dependent variable, 
7 1, and the independent ones, n2, n 3 ,  ... , r n ,  is more  rewarding. 

3 . 2 . 1  EXAMPLE: LATERAL VIBRATIONS OF A LAUNCH VEHICLE. The  dimen- 
sionless  representation of the  example  chosen  in  Section 3 . 1 . 1  was (3-8) 

The  similitude  requirements (3-12) are 
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The  equation (3-13) can now be  written as 

This equation  may  be  interpreted as if in the  model  the  mass "m" had no influence 
whatsoever.  That  this is not so is revealed  by  the  scaling law (3-14) which demands 
that 

Once the  physical  implications are understood, it is much easier to  proceed as 
follows: write the  scaling law (3-14)' which leads  to 

Then  scale  the  model  according  to  the  similitude  requirements (3-12) (performed  above), 
and perform the  experiment  according  to  the first equation (3-11); 

i. e.,  measure  the  frequency of the  model. 
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3.3 SCALE  FACTORS 

For many  engineers  working with models,  the  development in Sections 3.1 and 3.2 
may appear  to  be of purely  academic  interest.  There is, in fact,  seemingly a totally 
different  approach  which  yields all the criteria necessary  for a single  model test in 
a much  more  straightforward  manner.  However, this approach  by itself works only 
for  complete  similitude of the  model. As soon ae  distortions and scale effects become 
of importance,  the  more  general  approach of Sections 3.1 and 3.2  must  be  consulted. 
Nevertheless, a calculation of the scale factors as outlined  below will  be  sufficient  for 
most  routine  model  work. 

The  startihg point is again  the  knowledge of the  dependent  variable, xl, and the 
independent  variables, x2, x3, , x,, which enter  into  the  problem area of interest. 
These  variables will generally  possess  nonvanishing  basic  dimensions  [dl] , [a2] , , 
[d,] such as length,  force,  time,  etc.  The  relation of the  dimensions (3-2) 

a. 
[xp] = p Mil ; 

1P 
1 

(3 - 16) 

is rewritten  here  for  convenience. It establishes  the c-by-n  exponent matrix, a. 

The  basic  assumption  underlying  the  derivation of scale  factors is that  the  problem 
under  investigation is insensitive  to a change  in scale of the  basic  dimensions.  This 
assumption  is  equivalent  to  the  Buckingham  T-theorem  stated in Equation (3-3), and 
its validity is assured by the  existence of an exponent matrix,  b, which fulfills Equation 
(3-6). The  computation of scale  factors  therefore  becomes  just a  simplification of 
the  Buckingham II -theorem  for  the  general  class of engineering  structural  problems. 

Since  the  problem is  insensitive  to  changes in  the  units of the "c" basic  dimensions, 
arbitrary  basic  scale  factors  for  these  units  can be  defined. 

(3-17) 

L 
(i = 1, 2 ,  -*., c)  

The  superscripts @) and  (m)  indicate  ''prototype77  and  "model" as before.  The  lack of 
square  brackets  around  the  di  indicates  that  units  are  compared, not  the  dimensions 
per se. 

A different type of scale  factor is defined to compare  the "mrr variables,  xp, which 
enter  into  the  problem.  These  derived  scale  factors are 
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(3 - 18) 
(p = 1, 2, e . . ,  m) 

Equation (3-16) relates dimensions.  The  same type of equation  can  be  written to re- 
late the  quantities  associated  with  these  variables (e.g., a velocity of 2 ft/sec is the 
same as one of 6 ft/3 sec). 

(3-19) 

(i = 1,   2 ,  . . a ,  c; p = 1,   2 ,  . * * ,  m) 

Equation (3-19) is substituted  into (3-18) 

and  with (3-17) as follows 

(3 -2 0) 

(i = 1, 2 ,  * * e ,  c; p =  1 ,   2 ,  0 . -  
Y m) 

Comparison of Equation (3-19) and (3-20) shows  that  the  scale  factors 5 and 6 are re- 
lated in the  same way as the  quantities "X" and "d" which  they are scaling. 

The  general  procedure  to  be followed is extremely  simple: given  the  significant 
variables, x,  of a problem and the  relation of their  dimensions [x] to  the  basic  di- 
mensions  [dl as expressed in Equation (3-16), basic scale factors, 6 ,  for  the  basic 
dimensions are chosen, and the  derived scale factors, 5 ,  for  the  variables,  x, are 
complted  from Equation (3-20). In practice,  however,  the  procedure may  not be 
quite so straightforward.  A  basic scale factor, 6 , for  the  length,  for  instance,  may 
be  chosen.  The  necessity  to  make  model and prototype out of the same material  de- 
fines  some  derived scale factor, [. Application of Equation (3-20) wil l  show whether 
this is compatible  with  the  decisions  made  so far, etc. The  example in Section 3 . 3 . 1  
should demonstrate  this point clearly. 

The  traditional  notation  for  scale  factors is "X" for  the  length, 't" for  time, 172~ for 
forces, and "uE, uv, ufr' for  elastic  modulus,  velocity,  frequency,  et^.^^ This 
tradition  has  been  broken  here  to  produce a clear  distinction  between  basic  scale 
factors, 6 ,  and the  derived  ones, 5 . This allowed the  general  equation (3-20) to  be 
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written  which  replaces whole sets of equations found in the literature . There is 
logically a very  important  distinction  between  the scale factors ''6" and "g": the  for- 
mer  can  be  chosen at will,  whereas  the latter are subject t o  the  constraint  expressed 
by  Equation (3-20). In this connection it is good to  remember  that  the  basic  dimensions 
of a problem as defined  in  Section 3 . 1  need not necessarily  be  chosen as length,  time, 
etc. , but  may  very well be  velocity,  acceleration, etc. 

1 

It is easily  explained why the  dimensionless  variables, T ,  of Section 3 . 1  do not 
make  their  appearance  here in the  development of the scale factors. A s  already  men- 
tioned at the  beginning of this  section,  complete sets of scale  factors  can  be  derived 
only if complete  similitude is maintained.  Under  these  circumstances, all dimension- 
less variables are constant  according  to  Equation (3-15). This,  clearly,  makes it un- 
necessary  for  them  to be even  formulated  (e.g.,  the  example  in  Section 3.3.1).  Only 
when similitude  requirements are violated are the  dimensionless  variables a necessary 
ingredient of the  theory. In most  practical  cases,  the  theory of the  dimensionless 
variables and that of the  scale  factors  are applied in parallel. 

3 . 3 . 1  EXAMPLE: LATERAL VIBRATIONS OF A LAUNCH VEHICLE. The  basic 
dimensions,  d, the  dimensional  variables,  x, and the exponent matr ix ,   by  are  given 
in example 3 .3 .1 .  Equation (3-17) defines  the  basic  scale  factors 

The  derived scale factors are defined in (3-18) and are computed from (3-20). 

(3 -2 1) 

(3-22) 
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(3 -2 1) 
(Con td) 

Based on these scale factors two  different  ways of scaling wil l  be  discussed. 

3.3.1.1  Replica Model Using Identical  Material. A length  scale  factor of 5 is 
chosen in (3-2 1). 

6, = 5 (first decision) 

With Equations (3 -22)  it  follows  that 

5 ,  = 5 

- 6 b 2  1 
t m  52 P T 
" 

2 
5 ,  = 5 

< = 5  
4 

I 

1 

5 
2 P  [, =--6 
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The  scale  factors  to  the  right are not yet  fully  defined. Making the  prototype and the 
model from  the same material  implies  that 

6 ,  = 1 (second  decision) 

With  this it follows  that 

' = 1  
G 

One more  scale  factor  must be selected.  Assuming  that  the  mass  per unit  length of 
the model is determined by the  geometrical  dimensions, i.e. , that  the  mass  per unit 
length decreases with the square of the  length,  it  follows  that 

'm = 52 (third  decision) 

From which 

6, =c= 5 

This  relation  determines all eleven  scale  factors.  This  set of scale  factors  has been 
used in the  Saturn  one-fifth  scale  tests13. 

3 . 3 . 1 . 2  Model With Identical  Frequency.  Rather  than  scaling  the  mass  with  the 
geometry, as has  been  done in the  example  above, it is possible  to  postulate,  for in- 
stance,  that model  and  prototype  should  exhibit  the same  frequency of vibration.  The 
point of departure  from  the  example above is 

%lJ 
= 1 (third  decision) 
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and then 

This result demands  that  model and prototype possess  the  same  mass-per-unit-length 
properties.  This  may not necessarily be a practical  way, but it is a possibility 
that existe. The model is not  "distorted;"  it  conserves  complete  similitude  for  the 
variables  chosen  for  the  representation. 

3.3.2 KINEMATIC SIMILITUDE. Kinematics  involves  two  basic  dimensions:  length 
and time.  Taking  three-dimensional  physical  space and allowing  different  scale  fac- 
tors   for  all three  directions,  the exponent mat r ix ,   a ,  of Equation (3-16) becomes: 

Variables 
u u u v v v a a a  
2 Y Z X - 2 2 X Z Z  

1 1 I 

CTI I -1 -1 -1 -2 -2 -2 J 
Basic  dimensions 

The  variable  names are: "u" for  displacements, r r ~ r t  for  velocities, and "ar' for  ac- 
celerations,  each  subscripted with the  corresponding  directions.  The  basic  scale 
factors are defined  by  Equation (3-17). 

The  basic scale factors  or  their  equivalent  may  be  assigned  arbitrarily.  The  derived 
scale  factors  are,  according to (3-20): 

- 1  1 (3-23) 
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Alternate  ways of writing  the  velocity and acceleration scale factors are: 

5 =  
-1 

VX 'ux 'T 
; etc. 

5 =  = 5  5 -1 2 -1 

vx ux 
; etc. 

If the  basic  length  scale  factors are made  equal, i.e. ; 

then 

5, = 6, 

-1 -1 6 = 6L6T 
V = % * T  

(3 -2 3) 
(Contd) 

1 (3 -24) 

I (3 -2 5 )  

3.3.3 DYNAMIC SIMILITUDE. Dynamics  involves three  basic  dimensions:  length, 
time, and mass.  Taking  again  three-dimensional  physical  space and allowing  differ- 
ent scale factors  for all three  directions,  the exponent matrix, a ,  of Equation (3-16) 
becomes: 

Variables 

[%I 
c Lyl 

= CLzl 
CT1 

[MI 
Basic d 

i 1 

1 

Iimensions 

1 

1 

-1 

1 1 

1 1 1 

1 1 1 

.1 -1 -2 -2 -2 -2 -2 -2 

1 1  1 1  1 
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The variable names  are "u" for displacements, "v" for  velocities, "a"  for acceler- 
ations, "F" for forces, "m" for masses. The basic  scale  factors of  Equation (3-17) 
are : 

These  basic  scale  factors  or  their  equivalent  may  be  assigned  arbitrarily.  The  de- 
rived  scale  factors of Equation (3-20) are as follows: 

Some alternate  ways of writing  the  velocity,  acceleration, and force  scale  factors are: 

-1 
; etc. 

-1 
; etc. 

; etc. 

; etc. 

If the  basic  length  scale  factors are equal, i. e.  , i f  

I (3-27) 
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it follows  that 

3 (3 -2 8) 

If, in  addition to.this,  the  mass is scaled with the  geometry, i.e., if it is proportional 
to the  volume, 

and the  derived  force and mass scale  factors  become 

I (3-29) 

The  dynamic  similitude  requirements  contain the kinematic  requirements  com- 
pletely.  This  can be verified by comparing  the  results  obtained in  Section  3.3.2  with 
those  obtained  here. 

3.4 DISTORTED MODELS 

It is  more often  the rule rather than  the  exception  that a scale model does not fulfi l l  
all similitude  requirements  expressed in Equation  (3-12). This  implies  that  the 
scaling law (3-14) does not  hold. However,  valid  scale  modeling is stili possible, 
provided  that an experimental,  empirical,  or  theoretical  relation  can  be supplied  be- 
tween  the  dependent  variable and each one of the  independent  ones  for  which true 
scaling  is not  achieved. A s  a matter of fact,  distorted scale models  may  prove  to  be 
much  more  practical than true  scale  models. A good example  for  this is the  use of 
airplane  flutter  models12:  from  experience  it is known that  only  the  lower  frequencies 
of vibration  have any significant  influence. Building models which scale only these 
lower  frequencies  results in much better  experiments than  expensive  replica  models 
which represent  the  entire  frequency  spectrum, but  which are much less accurate at 
the low frequency  end. 
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To discuss  the laws governing  distorted  models it is most  advantageous  to  bring 
the  mathematical  representation  into  nondimensional  form as outlined in Sections 3.1 
and 3.2.  With n as the dependent variable,  the  representation  for  model and proto- 
type is given in Equations (3-11). It will  be  assumed  that it is possible  to scale the 
model for the  variables n2 ,  n 3 ,  , ns ,  but  not for rs+l, ns+2, e r n ;  i.e., 

( q = 2 ,  3 ,  ' . e ,  8 )  

(q = s+1, s+2, . . e ,  n) I (3-30) 

These  relations  replace  the  complete  similitude  requirements (3-12). Selecting  the 
first s-1 variables as those  that  can  be  scaled  does not impair  the  generality of the 
results  since  the  arrangement of variables is arbitrary anyhow. 

With (3-30) it follows  for  model and prototype  that 

1 
1 (3 -3 1) 

These  equations  replace  Equation (3-13) and instead of the  scaling law (3-14), 

The first equation (3-31) describes  the model  experiment. In order  for this to  be 
of any use  for the  investigation of the  prototype, a relation 

(3-32) 

is needed. 

3.4.1  TESTS OF SEVERAL MODELS. To assess the  influence of the  unscaled  vari- 
ables ns (m) (m) in the first equation  (3-31),  several  models  may have to  be 
built  for which the  scaled  variables lr2 to f f S  are kept  constant, i.e., the f i rs t  equation 
(3-30) remains  valid.  However,  the  mscaled  variables are varied  over as wide a 
range as possible or  necessary.  This  variation will be  described by factors '1," so 
that 

'n 

(3  -33) 



where  the  non-superscripted 7~ is a model  variable.  The first equation (3-31) becomes 

All superscripted  variables are constant  prototype  parameters.  Lumping  these  con- 
stants with a model  function, tb , allows  this  equation  to  be  written 

= 1 = (us+l' %+2' - - ' ' CYn) (3-34) 

Variation of the  factors a, i.e. , conducting  the  experiment  with  the  different 
models,  allows  an  (n-s+l) - dimensional  plot  to  be  drawn.  Extrapolation  or  inter- 
polation will yield  the  value of the  function $ at the  point  which  represents  the  prototype: 

(3 -35) 

The  general  procedure  that  has  been  outlined  here  can  be  modified in many  ways 
to accommodate  particular  problems.  Effective  modeling is the a r t  of making  the 
best  use of all  the knowledge about a given system so that  valid results are obtained 
with a minimum of cost and effort.  Sections 3.4.2 and 3.4.3 will  further  elaborate 
on this point. 

3.4.2 MODEL VARIATION. This method differs  from  the  general  procedure of 
Section 3.4.1 insofar as i t   uses one particular model configuration as the  starting 
point and employs  variations  to  define  the model law in the  vicinity of this  model5. 
In other  words,  the method derives  the model law from  the  experimental (and theoret- 
ical) knowledge of a function and its  derivations  at one particular point. It is founded 
on the  premise  that a function  can  be  fully  defined  by its  properties  at one  point. Ob- 
viously,  this need not be  the case  for non-steady  functions o r  when the  influence of 
some  variable i s  significant only in a certain  range.  However,  the  approach is de- 
finitely  useful  for  applications  with "well-behaved" variables  or when model and proto- 
type are not  too far separated. 

The  foregoing  argument  suggests a model law that is expandable  in a Taylor's 
series. With the  definition of the  increments 

(q = s+l,s+2, - 9 0 ,  n) 

(3-36) 

and  with the  incomplete  similitude  requirements  expressed in the first equation (3-30), 
the second  equation (3-31) can  be  written as 
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The  Taylor  expansion is 

The  superscripts in the  derivatives  indicate  that  the  derivatives  are  to  be  evaluated 
for  the model  configuration.  Each  derivative  must be found through at  least one ad- 
ditional  experiment  or  theoretical  relationship.  The  number of derivatives in Equation 
(3-37) increases  rapidly with  the  number of unscaled  variables, 7~ and the  order of 
the  derivatives  to  be  taken.  Therefore, a careful  evaluation of the  number of tests 

q’ 

required  is  definitely  indicated. I 

3.4.3 EXAMPLE:  LATERAL VIBRATION O F  A LAUNCH VEHICLE; ROTATIONAL 
INERTIA CORRECTION O F  THE SCALING  LAW. This  example will demonstrate how 
the  analytical  formulation of a problem  can be used  to  advantage to  design an experi- 
ment,  to  reduce  the  number of independent variables, and to  account  for  model 
distortions. 

The  rotational  inertia  usually  has a not too  pronounced  effect on the  frequencies of 
natural  vibration of a launch  vehicle. In the  example of Section  3.1.1  this  influence 
has been  neglected,  and,  therefore,  it would be a mere coincidence if the  model  pos- 
sessed  the  properly  scaled  rotational  inertia.  For  the  purpose of this  example  it 
shall be required  to  evaluate  the  influence of this  distortion. 

The  list of dimensionless  variables given  in  Section 3.1.1 will be  augmented by 

(3 -3 8) 

where p i s  the  rotational  inertia  per  unit  length and has  the  dimension  [PT2].  This 
variable will not be  the  same  (supposedly)  for model and prototype.  Instead, with 
Equation (3-33) it is to  be  expected  that 
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(3-39) 

The  differentid  equations  governing  the free vibrations of an elastic beam  which, ac- 
cording  to  Section 3.1.1 resembles that of a laterally  excited  launch  vehicle, are given 
as 24 

w = a + b  (3-40) 

3 
a a  

a y a t  
2 

a b  a 2 3 
K A G - + 5 t I z ) - p  a Y  a a  - a a  2 = 0 

a y a t  

(3-4 1) 

(3 -42) 

The  symbols are the  same as those  introduced in Section 3.1.1. In addition, w, a ,  
and b are the  total,  the  bending, and the  shear  deflections.  The  coordinate  along  the 
axis is y,  and t is, the  time.  The  deflections and their  coordinates are rendered 
dimensionless by 

The  form of the  solution w i l l  be 

(3-43) 

I (3-44) 

which assumes  that bending  and shear  deformations are in phase with each  other.  The 
index  i  identifies  the  mode, and Ai and Bi are the  corresponding  dimensionless mode 
shapes. 

Equations (3-43) and (3-44) are substituted into (3-41) and (3-42). With the  definition 
of the  variables n ,  witha and ai as constants, and a t h q  = 0: 

1 a2 a 
(3 -4 5) 
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(3-46) 

where 

(3-47) 

The  significance of the  simplification (3-47) is that  the  variables r3, 7r4, and r5 can 
be  lumped  into  one  variable  for  scaling  purposes.  This is typical  for  a  simplification 
of the  scaling  laws,  gained  from  insight  into  the  analytical  representation.  However, 
the two surviving  dimensional  variables, m  and E ,  in (3-45) and (3-46) must still be 
accounted for  separately.  This is the case through variable rIyi. 

Equations (3-45) and (3-46) are valid  for  prototype and model. Not all of the  vari- 
ables are different, though. The  expressions (3-30) are for  this case 

i (3-48) 

Another requirement, not expressed in terms of the  original  variables, is that 

(3 -49) 

This  demands  that  the  units of length  measurement in prototype and  model  be  identical, 
a condition  that is usually  overlooked  but  seldom  violated. To  simplify  matters, one 
assumption  will be  made:  the mode shapes of prototype and model are similar; i.e. , 
their  derivatives  with  respect  to  the  dimensionless  length  coordinate, Q, are identical. 
This  assumption  violates  the  theory  because  it  makes  Equation (3-45) incompatible with 
(3-46). However, it is felt  that  this is a  minor  offense a s  long a s  the  rotational  mass 
of the model is not too  far  off-scale.  The  final  results, however , must be interpreted 
with this  assumption in  mind. 

The  assumption of the  similarity of mode shapes  allows one to  use Equation (3-46) 
alone and also  to  drop  the mode  identifying  index, i. With (3-48) and (3-49), 
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To make  use of these  equations,  it is necessary  to  realize  that in the  original  model 
design of Section 3.1.1 it w a s  not sufficient  to  scale  the  vehicle  properties in some 
lumped  fashion.  Indeed, it was tacitly  assumed  that  the  variables and their  distri- 
bution  over  the  length were properly  scaled. A more  formal  approach should have 
included  the  derivatives with respect  to  the  length in the list of independent variables. 

With the condition  put  forward in Section 3.3.1.1 that  the model and the  prototype 
be  built  from  the  same  material,  Equations (3-50) and (3-51) lead to the condition 

o r ,  with  Equation (3-39) 

(3-52) 

The  variable 7 (m) is  determined  from model tests. To find the  prototype  variable, 
nl@), the r e sd t   f rom the model test  must  be multiplied by the  correction  factor, a6. 
For  perfect  scaling of the  rotational  inertia, a6 = 1, and no correction is necessary, 
as is to  be  expected.  Equation (3-52) is the  desired  relation (3-32) for  the  particular 
application  treated  here. 

Taking  the scale factors  used in example 3.3.1.1, the  relation  between  the fre- 
quencies  becomes 

where 

(3-53) 
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3.4.4 SCALE EFFECTS. Scale effects  represent a special  case of model distortions 
and they  are  treated in much the same way. Scale  effects  occur  when,  due  to  the dif- 
ferent  dimensions of model and prototype, a physical phenomenon gains  importance 
for one  but  not for the other,  The  classical  example is provided in fluid dynamics by 
models which possess a free liquid surface, e .& ,  models of waterways. In the  full- 
scale  application, the surface  tendon has no appreciable influence; however,  for the 
model with its much smaller  geometric  dimensions,  surface  tension  becomes  impor- 
tant. Since it is extremely  impractical  for  these  cases  to include the surface  tension 
in  the scaling law,  no direct  comparison of the full-scale and small-scale  applications 
can be made,  However,  empirical and theoretical  corrections can be applied as  out- 
lined in Section 3.4. 
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4/RECOMMENDED PRACTICES 

A test program  consists of the following major  parts: 

a. Definition of the  problem. 

b. Justification of the use of models. 

c. Assessment of the model design  parameters. 

d. Model engineering. 

e. Test setup. 

f. Test  procedure. 

g. Data  evaluation and interpretation. 

This is the  most  logical  sequence of events;  however,  practical  considerations will 
usually  demand  some  modifications.  This  section wil l  elaborate on the  various  points 
listed as far as they are typical  for  model  work.  This  excludes  the  test  setup,  pro- 
cedure, and evaluation of the  structural  dynamic  models  because  it is felt that  these 
points are adequately  covered in other  monographs of this series, e. g.,  Reference 9. 

4.1 STRUCTURAL bYNAMIC MODELS 

At the  present  time,  structural  models  are  used  to  determine  the  vibration  character- 
istics,  frequency,  mode, and damping of complete  launch  vehicles with their  payloads 
(References 13 to 19). Component testing,  separation  dynamics, and other  equally 
important  aspects  see  very  little, if any,  systematic  model  testing. It is  probably 
realistic  to  assume  that  st&tural model testing wil l  find more  applications in the 
future. 

4 . 1 . 1  JUSTIFICATION OF MODEL TESTS.  Structural  dynamic  model  tests  seem  to 
have  been  the  exception rather  than  the  rule  for  launch  vehicle  development. So far, 
full-scale  testing  has  been  employed  in  the  majority of development  programs. How- 
ever,  increased  demands on efficiency and reliability  may  very well reverse  this 
situation18. An excellent  argument  for  the  use of models is made by Jaszlics et al. l9 
which  centers on the  versatility of the  scaled  experiment. 

Tests are indicated  whenever  no  adequate  analysis  capability  exists  and, in addition, 
when an independent  verification of analytical  results is desired.  These  tests should 
be conducted  on  models  whenever: 

a. Information is needed  before  the  availability of full-scale  test  hardware,  or  full- 
scale hardware is unavailable  for  testing  the  complete  vehicle. 
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b. It is cheaper  to test models. 

c. Various test conditions  will  be  encountered. 

d. No other  test facilities are available. 

4.1.2 ENGINEERING OF MODELS. It is the  foremost  requirement of a model  that 
it exactly  duplicate all important  ,features of the full-scale hardware. Any deviations 
from  this rule should  be  kept  to a minimum, or,   their  influence  should  be  sufficiently 
well  understood  that  the test results  can  be  corrected  accordingly.  Especially  for 
structural  replica  models,  tolerances and joints  must  be  scaled  carefully.  This re- 
quirement  may  very well determine  the  smallest  useful scale to which a model  can  be 
built l8 9 19. 

On the  other  hand,  models  should not be  over-elaborate with respect  to  unimportant 
properties,  For  instance,  non-structural  parts  can be omitted and  accounted  for by 
dead  weights.  The  best  way  to  reach a good compromise  between  over-complication 
and over-simplification is to define  the  model parameters as outlined  in  Section 3. 
With this and any  other  available  information,  simplifications  can  be judged against 
some  valid criteria. 

4.1.3 MODEL PARAMETERS. It has  been  mentioned in  Section 3 . 1  that  for one and 
the  same  problem  many  different sets of dimensionless  variables (model parameters) 
may be chosen.  This  choice should be  dictated  mainly by the  convenience with which 
these  parameters  can  be  controlled in the  experiment.  However,  for  the  sake of 
comparison  with  previous  experiments  it is also a good idea to use  parameters which 
have found prior application.  The following list of parameters is taken  from  Runyan, 
Morgan,  and  Mixsonl8.  A list of more  general model parameters is given in Appen- 
dix A. 

Problem  Area 

Lateral  vibrations 

Longitudinal  vibrations 

Local  vibrations 

Sloshing  (rigid tank) 

Dimensionless  Parameters 
IT- 

2 2  
p ~ ‘  a t h r G ‘ P  ’A 

E ” r r 7 R y  E ’ E ’ p w  
””” 

2 
’1’ h a 7  2 
”- 

r l r  r ’  r 
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Problem Area - Dimensionless Parameters 

Buffetting  (rigid  vehicle) 

Flutter 

Ground winds 

The  symbols  used  here  are in agreement  with  those  used  before in the  examples;  ad- 
ditional  symbols are given in the  list of symbols. 

Reference 18 also  provides a discussion of these  problem  areas. 

Vibrations:  Lateral and longitudinal  vibrations  can  be  scaled in the  same  model as 
long as a vehicle  can  be  considered  to  be  primarily a beam. Only the first  two di- 
mensionless  parameters  apply if shear  deformation is neglected.  It i s  probably  better 
to  employ  separate  models  for  scaling  local and overall  vibrations  because of the 
many  parameters  which would enter  the  problem  simultaneously. 

Sloshing: The  three  parameters shown contain  the  Reynolds and Froude  numbers. 
Elastic walls will  increase  the  number of model parameters  substantially.  Difficulties 
are encountered in scaling  the  gravitational  field.  For  replica  models  built  from  the 
same  material,  the bending and shell  frequency  increases  linearly with the  length  scale 
factor,  whereas  the  slosh  frequency  increases  only with the  square  root of this  scale 
factor. 

Buffetting: The  correct  scaling of the  surface  roughness, Q, is critical.  To include 
the  effects of the  vehicle  elasticity, at least the  lateral  vibration  characteristics  must 
be  scaled  in  addition. 

Flutter: Modeling techniques  developed  for aircraft apply for launch  vehicles,  too. 

Ground  Winds: Important  variables are local  geometry and the  surface  roughness. 
The  lateral  vibration  characteristics  must  be  scaled  correctly. For very  large ve- 
hicles,  the  dimensions of available wind tunnels  may  make it difficult  to  maintain  the 
correct Reynolds  number and to  stay below an acceptable  Mach  number. 

4.1.4 SCALING LAW FOR ELASTIC STRUCTURES. The  differential  equation of 
three-dimensional,  linearized  theory of isotropic  elasticityz5 is employed to  define  the 
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variables which enter  the  modeling  relations of elastic  structure^^^. 

This  equation  is  written  for  an orthogonal Cartesian  reference frame (x, y, 2). The 
displacements are ux, u u and it is assumed  that  only  inertial  forces are acting. 

Equation (4-1) must  be  valid  for  prototype and model; i.e. , it  must be insensitive 

y' z' 

to a change  in scale. With the  definition of the  basic and derived  scale  factors in 
Equations (3-17) and (3-18),  Equation (4-1) can  be  transformed  into a different scale. 
Assuming  that  the  basic  length scale factor (Section 3.3), is the  same  for all spatial 
directions, i. e. , 

Equation (4-1) may be written as 

This equation does,  indeed,  agree with (4-1) if 
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The first condition  (4-2)  demands  that  Poisson's ratio  for model  and  prototype are 
identical.  The  second  condition  allows a wide choice of scaling  laws  to be selected 
since  three  (this  is  the  number of basic  dimensions) scale factors  can  be  selected 
arbitrarily.  The  equations of Section  3.3 wil l  be  helpful in applying  this  result. 

4.1.5 SCALING LAW FOR  DAMPING. It is   very difficult  to  formulate  rational  design 
criteria which wi l l  furnish  proper model damping  characteristics. However, in many 
cases,  model damping is not very  important:  it  may  be  sufficient  to run experiments 
on modes and frequencies  alone.  These results, when applied  to  the  prototype, are 
combined with empirical  damping  coefficients  to  supply  approximate  response  data. 

To  scale  dry  friction (Coulomb damping),  it is necessary  that  the  relation 

remain  constant23,  where 7 and cr are the  shear and normal stress in a joint, and ii is 
the  coefficient of friction. For material d a r n ~ i n g ~ ~ p ~ ~  a complex  elastic  modulus 
E(l+ig)  can  be  used,  where  the  damping  coefficient 

applies  reasonably wel l  for steel and brass .  Material constants are and ' h l ' ,  

and 'b'' is the stress amplitude. For  aluminum, a somewhat better  correlation  is 
obtained by 

where 'IT" is an  additional  material  constant  which  expresses a relaxation  time  for 
the  equalization of temperature. 

At present,  exact  prediction of the  damping  characteristics is very  difficult. Fur- 
ther information  may  be  gathered  from  References 23 and 26. 
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4.1.6 SCALING LAW FOR SHELLS. Various  sets of differential  equations are 
available for  the  analysis of shell  structures,  These  equations  can  be  used  to  ad- 
vantage  to. identify the  variables  that  enter  the  problem and need to be  scaled. An 
example of this is given  by  Morgana7 who uses  Fluegge's  equations  for  an  orthotropic 
layered  shell.  The  procedure to be followed is either that of identifying  the  dimension- 
lese  variables, a ,  as outlined  in  Sections 3.1 and 3.2 or the use of scale  factors as 
defined in Section 3.3. In practice, both approaches should complement  each  other. 
A systematic  example of the former  approach is given in Reference 27, whereas  the 
latter approach is analogous to  that of Section 4.1.4. 
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APPENDIX  A 

SOME  COMMONLY  USED  MODEL PARAMETERS 

This list of dimensionless  variables  has been  compiled  from  References 1, 28 and 
29. To avoid confusion, all these  variables  have been  identified by N and are dis- 
tinguished  by  their  subscripts. In a few cases,  discrepancies  in  the  definitions  exist 
which are, however,  limited  to  the  powers of the  dimensionless  variables. 

The  characteristic  quantities  used are given in the  following  table.  The  dimensions 
are given  with respect to a length,  force,  time,  temperature, i.e., L, P, T ,  8 system. 

QUANTJTY 

Length 

Force 

Time 

Temperature 

Modulus of Elasticity 

Velocity 

Mass density 

Pressure 

Dynamic  viscosity 

Kinematic  viscosity 

Velocity of sound 

Liquid surface  tension 

Acceleration of gravity 

Coefficient of temperature conduction 

Coefficient of heat  conduction 

Heat transfer  coefficient 

a. Hooke's  number  (static  elasticity) 

SYMBOL DIMENSION 

a 

F 

t 

9 

E 

V 

C 

(3 

ae 
k 

h 
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b. Newton's number  (dynamics) 

F 
NNe 

- - 
p V2A2 

This subject is treated in Section 3.3 .3 .  

c. Pressure coefficient (fluid dynamics) 

Np - - 2 
- p  

P V  

F 
This  number follows from b.with p = - 2 '  a 

d ,  Cauchy's  number (dynamic elasticity) 

= v j $  
Ne 

Another  definition29 of the  same  number is 

2 
NA = N 

C 

e. Mach number  (gas dynamics) 

This  number  follows  from  d. with c = 
$ 0  

f. Weber's  number (fluid dynamics  with  surface  tension) 

which follows  from  d. with u z Ea. 

g. Reynolds'  number  (viscous  fluid  dynamics) 
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h. F'roude's number (fluid dynamics  with  gravitation) 

Another  definition1 of the  same  number is 

2 
NF' = NF 

i. Fourier's  number  (heat flow) 

2 
- a 

N ~ o  t a  
" 

e 

The  same  number is also defined as2' 

" 1 
NFo 
" 

NFo 

j .  P6clet's  number  (heat flow in  liquid and gas) 

This  number is obtained from i. with v =- 
A 
t 

k. Prandtl's  number (heat convection) 

1. Nusselt's  number (heat transfer) 

NASA-Langley, 1968 - 32 CR-1195 

I I 
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